Leptin functions peripherally to regulate differentiation of mesenchymal progenitor cells.
نویسندگان
چکیده
Leptin functions through a well-documented central neuroendocrine pathway to regulate bone mass. However, the ability of leptin to modulate bone mass through a peripheral mechanism has been debated due to conflicting in vitro results and lack of sufficient in vivo models. We utilized mice with LoxP sites introduced into the long-form leptin receptor (ObRb) gene to determine how leptin regulates mesenchymal progenitor cell (MPC) differentiation and osteoblast function in vitro and in vivo. Rapid phosphorylation of Stat3 after leptin treatment of bone marrow stromal cells (BMSCs) from mice with conditional deletion of ObRb in macrophages (LysM(Cre+F/F)) confirmed expression of functional leptin receptors by BMSCs. Adenovirus-Cre mediated disruption of ObRb in primary stromal cells decreased mineralization and increased adipogenesis. In contrast, BMSCs harvested from leptin-signaling deficient Ob/Ob or Db/Db mice showed increased mineralization. To determine the physiologic relevance of these differences, mice with cell-specific deletion of ObRb in mesenchymal precursors (3.6(Cre+F/F)) or osteoblasts (2.3(Cre+F/F)) were generated. Although the 2.3(Cre+F/F) mice were grossly normal, the 3.6(Cre+F/F) mice displayed mild obesity that was not attributed to food intake. Femurs of 3.6(Cre+F/F) animals showed a 58%-61.9% increase in trabecular bone volume and a 65.5%-74% increase in bone mineral density. Cortical volume and mineral content were also increased 18%-22%. Primary 3.6(Cre+F/F) BMSCs recapitulated the high mineralization phenotype of Ob/Ob and Db/Db BMSCs. We conclude that leptin may have multiple peripheral roles depending on the differentiation state of MPC. Leptin (a) helps maintain MPCs in an undifferentiated state and (b) promotes mineralization of more differentiated osteoblasts.
منابع مشابه
A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells
Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...
متن کاملMesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells
Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...
متن کاملA review of Biology and clinical use of Mesenchymal stem cell: an immune -modulator progenitor cell
Human mesenchymal stem cells (hMSCs), which also called mesenchymal stromal cells, are multipotent stem cell. Human MSCs typically are positive for the surface markers CD44, CD73, CD90, CD105, CD106, and also negative for hematopoietic markers CD34 and CD45.These cells can be isolated from postnatal bone marrow, adipose tissue, placenta, and scalp tissue, as well as from various fetal tissues. ...
متن کاملBlastema from rabbit ear contains progenitor cells comparable to marrow derived mesenchymal stem cells
Rabbits have the capacity to regenerate holes in their ears by forming a blastema, a tissue that is made up of a group of undifferentiated cells. The purpose of the present study was to isolate and characterize blastema progenitor cells and compare them with marrow mesenchymal stem cells (MSCs). Five New Zealand white male rabbits were used in the present study. A 2-mm hole was created in the a...
متن کاملMatrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells
Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stem cells
دوره 28 6 شماره
صفحات -
تاریخ انتشار 2010